Development of a deep learning-based image quality control system to detect and filter out ineligible slit-lamp images: A multicenter study.
Journal:
Computer methods and programs in biomedicine
Published Date:
May 1, 2021
Abstract
BACKGROUND AND OBJECTIVE: Previous studies developed artificial intelligence (AI) diagnostic systems only using eligible slit-lamp images for detecting corneal diseases. However, images of ineligible quality (including poor-field, defocused, and poor-location images), which are inevitable in the real world, can cause diagnostic information loss and thus affect downstream AI-based image analysis. Manual evaluation for the eligibility of slit-lamp images often requires an ophthalmologist, and this procedure can be time-consuming and labor-intensive when applied on a large scale. Here, we aimed to develop a deep learning-based image quality control system (DLIQCS) to automatically detect and filter out ineligible slit-lamp images (poor-field, defocused, and poor-location images).