Generalized and transferable patient language representation for phenotyping with limited data.

Journal: Journal of biomedical informatics
Published Date:

Abstract

The paradigm of representation learning through transfer learning has the potential to greatly enhance clinical natural language processing. In this work, we propose a multi-task pre-training and fine-tuning approach for learning generalized and transferable patient representations from medical language. The model is first pre-trained with different but related high-prevalence phenotypes and further fine-tuned on downstream target tasks. Our main contribution focuses on the impact this technique can have on low-prevalence phenotypes, a challenging task due to the dearth of data. We validate the representation from pre-training, and fine-tune the multi-task pre-trained models on low-prevalence phenotypes including 38 circulatory diseases, 23 respiratory diseases, and 17 genitourinary diseases. We find multi-task pre-training increases learning efficiency and achieves consistently high performance across the majority of phenotypes. Most important, the multi-task pre-training is almost always either the best-performing model or performs tolerably close to the best-performing model, a property we refer to as robust. All these results lead us to conclude that this multi-task transfer learning architecture is a robust approach for developing generalized and transferable patient language representations for numerous phenotypes.

Authors

  • Yuqi Si
    School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA.
  • Elmer V Bernstam
    Center for Computational Biomedicine, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA, Department of Public Health Science, Medical University of South Carolina, 135 Cannon Street, Suite 303, Charleston, SC 29425, USA and Department of Investigational Cancer Therapeutics, Institute for Personalized Cancer Therapy, UT-MD Anderson Cancer Center, 1400 Holcombe Blvd., FC8.3044, Houston, TX 77030, USA.
  • Kirk Roberts
    The University of Texas Health Science Center at Houston, USA.