Application of Artificial Intelligence-Based Regression Methods in the Problem of COVID-19 Spread Prediction: A Systematic Review.

Journal: International journal of environmental research and public health
Published Date:

Abstract

COVID-19 is one of the greatest challenges humanity has faced recently, forcing a change in the daily lives of billions of people worldwide. Therefore, many efforts have been made by researchers across the globe in the attempt of determining the models of COVID-19 spread. The objectives of this review are to analyze some of the open-access datasets mostly used in research in the field of COVID-19 regression modeling as well as present current literature based on Artificial Intelligence (AI) methods for regression tasks, like disease spread. Moreover, we discuss the applicability of Machine Learning (ML) and Evolutionary Computing (EC) methods that have focused on regressing epidemiology curves of COVID-19, and provide an overview of the usefulness of existing models in specific areas. An electronic literature search of the various databases was conducted to develop a comprehensive review of the latest AI-based approaches for modeling the spread of COVID-19. Finally, a conclusion is drawn from the observation of reviewed papers that AI-based algorithms have a clear application in COVID-19 epidemiological spread modeling and may be a crucial tool in the combat against coming pandemics.

Authors

  • Jelena Musulin
    Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia.
  • Sandi Baressi Šegota
    Faculty of Engineering Rijeka, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia.
  • Daniel Štifanić
    Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia.
  • Ivan Lorencin
    University of Rijeka, Faculty of Engineering, Vukovarska 58, 51000 Rijeka, Croatia.
  • Nikola Anđelić
    University of Rijeka, Faculty of Engineering, Vukovarska 58, 51000 Rijeka, Croatia. Electronic address: nandelic@riteh.hr.
  • Tijana Šušteršič
    Faculty of Engineering, University of Kragujevac, Sestre Janjić, 34000 Kragujevac, Serbia.
  • Anđela Blagojević
    Faculty of Engineering, University of Kragujevac, Sestre Janjić, 34000 Kragujevac, Serbia.
  • Nenad Filipovic
  • Tomislav Ćabov
    Faculty of Dental Medicine, University of Rijeka, Kresimirova 40/42, 51000 Rijeka, Croatia.
  • Elitza Markova-Car
    Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia.