Differential mapping spiking neural network for sensor-based robot control.

Journal: Bioinspiration & biomimetics
Published Date:

Abstract

In this work, a spiking neural network (SNN) is proposed for approximating differential sensorimotor maps of robotic systems. The computed model is used as a local Jacobian-like projection that relates changes in sensor space to changes in motor space. The SNN consists of an input (sensory) layer and an output (motor) layer connected through plastic synapses, with inter-inhibitory connections at the output layer. Spiking neurons are modeled as Izhikevich neurons with a synaptic learning rule based on spike timing-dependent plasticity. Feedback data from proprioceptive and exteroceptive sensors are encoded and fed into the input layer through a motor babbling process. A guideline for tuning the network parameters is proposed and applied along with the particle swarm optimization technique. Our proposed control architecture takes advantage of biologically plausible tools of an SNN to achieve the target reaching task while minimizing deviations from the desired path, and consequently minimizing the execution time. Thanks to the chosen architecture and optimization of the parameters, the number of neurons and the amount of data required for training are considerably low. The SNN is capable of handling noisy sensor readings to guide the robot movements in real-time. Experimental results are presented to validate the control methodology with a vision-guided robot.

Authors

  • Omar Zahra
    The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China.
  • Silvia Tolu
    Technical University of Denmark, Denmark.
  • David Navarro-Alarcon
    Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, NT.