A survey on applications of deep learning in microscopy image analysis.

Journal: Computers in biology and medicine
Published Date:

Abstract

Advanced microscopy enables us to acquire quantities of time-lapse images to visualize the dynamic characteristics of tissues, cells or molecules. Microscopy images typically vary in signal-to-noise ratios and include a wealth of information which require multiple parameters and time-consuming iterative algorithms for processing. Precise analysis and statistical quantification are often needed for the understanding of the biological mechanisms underlying these dynamic image sequences, which has become a big challenge in the field. As deep learning technologies develop quickly, they have been applied in bioimage processing more and more frequently. Novel deep learning models based on convolution neural networks have been developed and illustrated to achieve inspiring outcomes. This review article introduces the applications of deep learning algorithms in microscopy image analysis, which include image classification, region segmentation, object tracking and super-resolution reconstruction. We also discuss the drawbacks of existing deep learning-based methods, especially on the challenges of training datasets acquisition and evaluation, and propose the potential solutions. Furthermore, the latest development of augmented intelligent microscopy that based on deep learning technology may lead to revolution in biomedical research.

Authors

  • Zhichao Liu
    a Division of Bioinformatics and Biostatistics , National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson , AR , USA.
  • Luhong Jin
    Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, State Key Laboratory of Modern Optical Instrumentation, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, China; Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 310058, China.
  • Jincheng Chen
    Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, State Key Laboratory of Modern Optical Instrumentation, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, China; Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 310058, China.
  • Qiuyu Fang
    Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, State Key Laboratory of Modern Optical Instrumentation, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, China.
  • Sergey Ablameyko
    National Academy of Sciences, United Institute of Informatics Problems, Belarusian State University, Minsk, 220012, Belarus.
  • Zhaozheng Yin
  • Yingke Xu
    Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China. Electronic address: yingkexu@zju.edu.cn.