Automatic segmentation of the pharyngeal airway space with convolutional neural network.

Journal: Journal of dentistry
Published Date:

Abstract

OBJECTIVES: This study proposed and investigated the performance of a deep learning based three-dimensional (3D) convolutional neural network (CNN) model for automatic segmentation of the pharyngeal airway space (PAS).

Authors

  • Sohaib Shujaat
    OMFS IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, University of Leuven and Oral & Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium.
  • Omid Jazil
    OMFS IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, KU Leuven & Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, Leuven, Belgium.
  • Holger Willems
    Relu, Innovatie-en incubatiecentrum KU Leuven, Leuven, 3000, Belgium.
  • Adriaan Van Gerven
    Relu, R&D, 3000 Leuven, Belgium.
  • Eman Shaheen
    OMFS IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, KU Leuven & Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, Leuven, Belgium.
  • Constantinus Politis
    OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven and Department of Oral & Maxillofacial Surgery, University Hospitals Leuven, KU Leuven, Kapucijnenvoer 7, 3000, Leuven, Belgium; Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium.
  • Reinhilde Jacobs
    OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven and Department of Oral & Maxillofacial Surgery, University Hospitals Leuven, KU Leuven, Kapucijnenvoer 7, 3000, Leuven, Belgium; Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden. Electronic address: reinhilde.jacobs@ki.se.