Towards Lifespan Automation for Based on Deep Learning: Analysing Convolutional and Recurrent Neural Networks for Dead or Live Classification.

Journal: Sensors (Basel, Switzerland)
Published Date:

Abstract

The automation of lifespan assays with in standard Petri dishes is a challenging problem because there are several problems hindering detection such as occlusions at the plate edges, dirt accumulation, and worm aggregations. Moreover, determining whether a worm is alive or dead can be complex as they barely move during the last few days of their lives. This paper proposes a method combining traditional computer vision techniques with a live/dead classifier based on convolutional and recurrent neural networks from low-resolution image sequences. In addition to proposing a new method to automate lifespan, the use of data augmentation techniques is proposed to train the network in the absence of large numbers of samples. The proposed method achieved small error rates (3.54% ± 1.30% per plate) with respect to the manual curve, demonstrating its feasibility.

Authors

  • Antonio García Garví
    Instituto de Automática e Informática Industrial, Universitat Politècnica de València, 46022 Valencia, Spain.
  • Joan Carles Puchalt
    Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Valencia, Spain.
  • Pablo E Layana Castro
    Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Valencia, Spain.
  • Francisco Navarro Moya
    Instituto de Automática e Informática Industrial, Universitat Politècnica de València, 46022 Valencia, Spain.
  • Antonio-José Sánchez-Salmerón
    Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Valencia, Spain. asanchez@isa.upv.es.