Automatic left ventricle volume calculation with explainability through a deep learning weak-supervision methodology.

Journal: Computer methods and programs in biomedicine
Published Date:

Abstract

BACKGROUND AND OBJECTIVE: Magnetic resonance imaging is the most reliable imaging technique to assess the heart. More specifically there is great importance in the analysis of the left ventricle, as the main pathologies directly affect this region. In order to characterize the left ventricle, it is necessary to extract its volume. In this work we present a neural network architecture that is capable of directly estimating the left ventricle volume in short axis cine Magnetic Resonance Imaging in the end-diastolic frame and provide a segmentation of the region which is the basis of the volume calculation, thus offering explainability to the estimated value.

Authors

  • Manuel Pérez-Pelegrí
    Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Camí de Vera, s/n, 46022 Valencia, Spain.
  • José V Monmeneu
    Unidad de Imagen Cardíaca, ERESA-ASCIRES Grupo Biomédico, Valencia, Spain.
  • María P López-Lereu
    Unidad de Imagen Cardíaca, ERESA-ASCIRES Grupo Biomédico, Valencia, Spain.
  • Lucía Pérez-Pelegrí
    Facultad de Enfermería, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain.
  • Alicia M Maceira
    Unidad de Imagen Cardíaca, ERESA-ASCIRES Grupo Biomédico, Valencia, Spain.
  • Vicente Bodí
    Departamento de Medicina, Universitat de València, Estudi General, Valencia, Spain; Servicio de Cardiología, Hospital Clínico Universitario de Valencia, INCLIVA, CIBERCV, Valencia, Spain.
  • David Moratal
    Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain.