Comparison of machine learning techniques for the identification of human activities from inertial sensors available in a mobile device after the application of data imputation techniques.

Journal: Computers in biology and medicine
Published Date:

Abstract

Human activity recognition (HAR) is a significant research area due to its wide range of applications in intelligent health systems, security, and entertainment games. Over the past few years, many studies have recognized human daily living activities using different machine learning approaches. However, the performance of a machine learning algorithm varies based on the sensing device type, the number of sensors in that device, and the position of the underlying sensing device. Moreover, the incomplete activities (i.e., data captures) in a dataset also play a crucial role in the performance of machine learning algorithms. Therefore, we perform a comparative analysis of eight commonly used machine learning algorithms in different sensor combinations in this work. We used a publicly available mobile sensors dataset and applied the k-Nearest Neighbors (KNN) data imputation technique for extrapolating the missing samples. Afterward, we performed a couple of experiments to figure out which algorithm performs best at which sensors' data combination. The experimental analysis reveals that the AdaBoost algorithm outperformed all machine learning algorithms for recognizing five different human daily living activities with both single and multi-sensor combinations. Furthermore, the experimental results show that AdaBoost is capable to correctly identify all the activities presented in the dataset with 100% classification accuracy.

Authors

  • Ivan Miguel Pires
    Instituto de Telecomunicações, Universidade da Beira Interior, 6200-001 Covilhã, Portugal; Computer Science Department, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal; UICISA:E Research Centre, School of Health, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal. Electronic address: impires@it.ubi.pt.
  • Faisal Hussain
    Al-Khawarizmi Institute of Computer Science (KICS), University of Engineering & Technology (UET), 54890 Lahore, Pakistan. Electronic address: faisal.hussain.engr@gmail.com.
  • Gonçalo Marques
    Instituto de Telecomunicações, Universidade da Beira Interior, 6201-001, Covilhã, Portugal.
  • Nuno M Garcia
    Department of Informatics, Instituto de Telecomunicações and ALLab Assisted Living Computing and Telecommunications Laboratory, Universidade da Beira Interior, Covilhã, Portugal.