Intrinsic Plasticity-Based Neuroadptive Control With Both Weights and Excitability Tuning.
Journal:
IEEE transactions on neural networks and learning systems
Published Date:
Jul 6, 2021
Abstract
This brief presents an intrinsic plasticity (IP)-driven neural-network-based tracking control approach for a class of nonlinear uncertain systems. Inspired by the neural plasticity mechanism of individual neuron in nervous systems, a learning rule referred to as IP is employed for adjusting the radial basis functions (RBFs), resulting in a neural network (NN) with both weights and excitability tuning, based on which neuroadaptive tracking control algorithms for multiple-input-multiple-output (MIMO) uncertain systems are derived. Both theoretical analysis and numerical simulation confirm the effectiveness of the proposed method.