Accurate diagnosis of sepsis using a neural network: Pilot study using routine clinical variables.

Journal: Computer methods and programs in biomedicine
Published Date:

Abstract

BACKGROUND AND OBJECTIVES: Sepsis is a severe infection that increases mortality risk and is one if the main causes of death in intensive care units. Accurate detection is key to successful interventions, but diagnosis of sepsis is complicated because the initial signs and symptoms are not specific. Biomarkers that have been proposed have low specificity and sensitivity, are expensive, and not available in every hospital. In this study, we propose the use of artificial intelligence in the form of a neural network to diagnose sepsis using only common laboratory tests and vital signs that are routine and widely available.

Authors

  • Lourdes Andrea Arriaga-Pizano
    Instituto Mexicano del Seguro Social, Centro Medico Nacional Siglo XXI, Hospital de cardiología, Mexico 0672, DF, Mexico.
  • Marcos Angel Gonzalez-Olvera
    Instituto Mexicano del Seguro Social, Centro Medico Nacional Siglo XXI, Hospital de cardiología, Mexico 0672, DF, Mexico.
  • Eduardo Antonio Ferat-Osorio
    Instituto Mexicano del Seguro Social, Centro Medico Nacional Siglo XXI, Hospital de cardiología, Mexico 0672, DF, Mexico.
  • Jesica Escobar
    Instituto Mexicano del Seguro Social, Centro Medico Nacional Siglo XXI, Hospital de cardiología, Mexico 0672, DF, Mexico.
  • Ana Luisa Hernandez-Perez
    Instituto Mexicano del Seguro Social, Centro Medico Nacional Siglo XXI, Hospital de cardiología, Mexico 0672, DF, Mexico.
  • Cristina Revilla-Monsalve
    Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, 06720, Mexico City, Mexico.
  • Constatino Lopez-Macias
    Instituto Mexicano del Seguro Social, Centro Medico Nacional Siglo XXI, Hospital de cardiología, Mexico 0672, DF, Mexico.
  • José Israel León-Pedroza
    Instituto Mexicano del Seguro Social, Centro Medico Nacional Siglo XXI, Hospital de cardiología, Mexico 0672, DF, Mexico.
  • Graciela Libier Cabrera-Rivera
    Instituto Mexicano del Seguro Social, Centro Medico Nacional Siglo XXI, Hospital de cardiología, Mexico 0672, DF, Mexico.
  • Uriel Guadarrama-Aranda
    Instituto Mexicano del Seguro Social, Centro Medico Nacional Siglo XXI, Hospital de cardiología, Mexico 0672, DF, Mexico.
  • Ron Leder
    Instituto Mexicano del Seguro Social, Centro Medico Nacional Siglo XXI, Hospital de cardiología, Mexico 0672, DF, Mexico.
  • Ana Gabriela Gallardo-Hernandez
    Instituto Mexicano del Seguro Social, Centro Medico Nacional Siglo XXI, Hospital de cardiología, Mexico 0672, DF, Mexico. Electronic address: anagabygh@gmail.com.