Accurate diagnosis of sepsis using a neural network: Pilot study using routine clinical variables.
Journal:
Computer methods and programs in biomedicine
Published Date:
Aug 31, 2021
Abstract
BACKGROUND AND OBJECTIVES: Sepsis is a severe infection that increases mortality risk and is one if the main causes of death in intensive care units. Accurate detection is key to successful interventions, but diagnosis of sepsis is complicated because the initial signs and symptoms are not specific. Biomarkers that have been proposed have low specificity and sensitivity, are expensive, and not available in every hospital. In this study, we propose the use of artificial intelligence in the form of a neural network to diagnose sepsis using only common laboratory tests and vital signs that are routine and widely available.