Deep neural network-estimated electrocardiographic age as a mortality predictor.

Journal: Nature communications
Published Date:

Abstract

The electrocardiogram (ECG) is the most commonly used exam for the evaluation of cardiovascular diseases. Here we propose that the age predicted by artificial intelligence (AI) from the raw ECG (ECG-age) can be a measure of cardiovascular health. A deep neural network is trained to predict a patient's age from the 12-lead ECG in the CODE study cohort (n = 1,558,415 patients). On a 15% hold-out split, patients with ECG-age more than 8 years greater than the chronological age have a higher mortality rate (hazard ratio (HR) 1.79, p < 0.001), whereas those with ECG-age more than 8 years smaller, have a lower mortality rate (HR 0.78, p < 0.001). Similar results are obtained in the external cohorts ELSA-Brasil (n = 14,236) and SaMi-Trop (n = 1,631). Moreover, even for apparent normal ECGs, the predicted ECG-age gap from the chronological age remains a statistically significant risk predictor. These results show that the AI-enabled analysis of the ECG can add prognostic information.

Authors

  • Emilly M Lima
    Telehealth Center, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
  • Antônio H Ribeiro
    Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. antonio-ribeiro@ufmg.br.
  • Gabriela M M Paixão
    Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
  • Manoel Horta Ribeiro
    Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
  • Marcelo M Pinto-Filho
    Telehealth Center, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
  • Paulo R Gomes
    Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
  • Derick M Oliveira
    Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
  • Ester C Sabino
    Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil.
  • Bruce B Duncan
    Programa de Pós-Graduação em Epidemiologia and Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
  • Luana Giatti
    Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
  • Sandhi M Barreto
    Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
  • Wagner Meira
    Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
  • Thomas B Schön
    Division of Systems and Control, Department of Information Technology (T.B.S.), Uppsala University, Sweden.
  • Antonio Luiz P Ribeiro
    Hospital das Clínicas and Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190 - sala 533/Universidade Federal de Minas Gerais (UFMG), Belo Horizonte - MG, Brazil. Electronic address: tom@hc.ufmg.br.