Detecting out-of-distribution samples via variational auto-encoder with reliable uncertainty estimation.

Journal: Neural networks : the official journal of the International Neural Network Society
Published Date:

Abstract

Variational autoencoders (VAEs) are influential generative models with rich representation capabilities from the deep neural network architecture and Bayesian method. However, VAE models have a weakness that assign a higher likelihood to out-of-distribution (OOD) inputs than in-distribution (ID) inputs. To address this problem, a reliable uncertainty estimation is considered to be critical for in-depth understanding of OOD inputs. In this study, we propose an improved noise contrastive prior (INCP) to be able to integrate into the encoder of VAEs, called INCPVAE. INCP is scalable, trainable and compatible with VAEs, and it also adopts the merits from the INCP for uncertainty estimation. Experiments on various datasets demonstrate that compared to the standard VAEs, our model is superior in uncertainty estimation for the OOD data and is robust in anomaly detection tasks. The INCPVAE model obtains reliable uncertainty estimation for OOD inputs and solves the OOD problem in VAE models.

Authors

  • Xuming Ran
    Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China; College of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing 400074, China. Electronic address: ranxuming@gmail.com.
  • Mingkun Xu
    Department of Precision Instrument, Tsinghua University, Beijing, 100084, China; Center for Brain Inspired Computing Research, Tsinghua University, Beijing, 100084, China; Beijing Innovation Center for Future Chip, Beijing, 100084, China.
  • Lingrui Mei
    China Automotive Engineering Research Institute, Chongqing 401122, China.
  • Qi Xu
    State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China.
  • Quanying Liu
    Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China. Electronic address: liuqy@sustech.edu.cn.