One-dimensional convolutional neural network and hybrid deep-learning paradigm for classification of specific language impaired children using their speech.
Journal:
Computer methods and programs in biomedicine
Published Date:
Oct 22, 2021
Abstract
BACKGROUND AND OBJECTIVE: Screening children for communicational disorders such as specific language impairment (SLI) is always challenging as it requires clinicians to follow a series of steps to evaluate the subjects. Artificial intelligence and computer-aided diagnosis have supported health professionals in making swift and error-free decisions about the neurodevelopmental state of children vis-à-vis language comprehension and production. Past studies have claimed that typical developing (TD) and SLI children show distinct vocal characteristics that can serve as discriminating facets between them. The objective of this study is to group children in SLI or TD categories by processing their raw speech signals using two proposed approaches: a customized convolutional neural network (CNN) model and a hybrid deep-learning framework where CNN is combined with long-short-term-memory (LSTM).