ML-Net: Multi-Channel Lightweight Network for Detecting Myocardial Infarction.

Journal: IEEE journal of biomedical and health informatics
Published Date:

Abstract

Due to the complexity of myocardial infarction (MI) waveform, most traditional automatic diagnosis models rarely detect it, while those able to detect MI often require high computing and storage capacity, rendering them unsuitable for portable devices. Therefore, in order for convenient real-time MI detection, it is essential to design lightweight models suitable for resource-limited portable devices. This paper proposes a novel multi-channel lightweight model (ML-Net), that provides a new solution for portable detection devices with limited resources. In ML-Net, each electrocardiogram (ECG) lead is assigned an independent channel, ensuring data independence and preserve the ECG characteristics of different angles represented by different leads. Moreover, convolution kernels of heterogeneous sizes are utilized to achieve accurate classification with only a small amount of lead data. Extensive experiments over actual ECG data from the PTB diagnostic database are conducted to evaluate ML-Net. The results show that ML-Net outperforms comparable schemes in diagnosing MI, and it requires lower computational cost and less memory, so that portable devices can be more widely used in the field of Internet of Medical Things(IoMT).

Authors

  • Yangjie Cao
  • Tingting Wei
  • Bo Zhang
    Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China.
  • Nan Lin
    Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
  • Joel J P C Rodrigues
  • Jie Li
    Guangdong-Hong Kong-Macao Greater Bay Area Artificial Intelligence Application Technology Research Institute, Shenzhen Polytechnic University, Shenzhen, China.
  • Di Zhang
    College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.