A Shape-Constrained Neural Data Fusion Network for Health Index Construction and Residual Life Prediction.

Journal: IEEE transactions on neural networks and learning systems
PMID:

Abstract

With the rapid development of sensor technologies, multisensor signals are now readily available for health condition monitoring and remaining useful life (RUL) prediction. To fully utilize these signals for a better health condition assessment and RUL prediction, health indices are often constructed through various data fusion techniques. Nevertheless, most of the existing methods fuse signals linearly, which may not be sufficient to characterize the health status for RUL prediction. To address this issue and improve the predictability, this article proposes a novel nonlinear data fusion approach, namely, a shape-constrained neural data fusion network for health index construction. Especially, a neural network-based structure is employed, and a novel loss function is formulated by simultaneously considering the monotonicity and curvature of the constructed health index and its variability at the failure time. A tailored adaptive moment estimation algorithm (Adam) is proposed for model parameter estimation. The effectiveness of the proposed method is demonstrated and compared through a case study using the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) data set.

Authors

  • Zhen Li
    PepsiCo R&D, Valhalla, NY, United States.
  • Jianguo Wu
    School of Life Sciences, Arizona State University, Tempe, AZ, 85281, USA; School of Sustainability, Julie A. Wrigley Global Institute of Sustainability, Arizona State University, Tempe, AZ, 85281, USA; Center for Human-Environment System Sustainability (CHESS), State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, 100875, China.
  • Xiaowei Yue