Automatic Onsets and Systolic Peaks Detection and Segmentation of Arterial Blood Pressure Waveforms using Fully Convolutional Neural Networks.
Journal:
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Published Date:
Nov 1, 2021
Abstract
Arterial blood pressure (ABP) waveform is a common physiological signal that contains a wealth of cardiovascular information. According to the cardiac cycle, the ABP waveform is divided into rapid ejection, systolic and diastolic phases. Therefore, the characteristic points of the arterial blood pressure waveform, i.e. their onsets, systolic peaks, represent the timing of the minimum and maximum pressures. It is important to detect these characteristic points accurately. Recently, many researchers have introduced some feature points detection methods, but the accuracy is not particularly high. In this paper, a deep learning method is proposed to achieve periodic segmentation and feature points detection of ABP signals using a one-dimensional U-Net network. The network can split the ABP signal into two parts and accurately detect the feature points. The method is validated on an ABP dataset of 126 people, 500 people each. Performances are good at different tolerance thresholds, with an average time difference of less than 1.5 ms. Finally, the method performs with 99.79% and 99.79% sensitivity, 99.99% and 99.94% positive predictivity, and 0.23% and 0.27% error rates for both onsets and systolic peaks at a tolerance threshold of 30 ms. To our knowledge, this is the first paper to use deep learning methods for the onsets and systolic peaks detections of ABP signals.