AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Systole

Showing 1 to 10 of 25 articles

Clear Filters

The Effectiveness of a Deep Learning Model to Detect Left Ventricular Systolic Dysfunction from Electrocardiograms.

International heart journal
Deep learning models can be applied to electrocardiograms (ECGs) to detect left ventricular (LV) dysfunction. We hypothesized that applying a deep learning model may improve the diagnostic accuracy of cardiologists in predicting LV dysfunction from E...

Blood Biomarkers Predict Cardiac Workload Using Machine Learning.

BioMed research international
INTRODUCTION: Rate pressure product (the product of heart rate and systolic blood pressure) is a measure of cardiac workload. Resting rate pressure product (rRPP) varies from one individual to the next, but its biochemical/cellular phenotype remains ...

Automatic Onsets and Systolic Peaks Detection and Segmentation of Arterial Blood Pressure Waveforms using Fully Convolutional Neural Networks.

Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Arterial blood pressure (ABP) waveform is a common physiological signal that contains a wealth of cardiovascular information. According to the cardiac cycle, the ABP waveform is divided into rapid ejection, systolic and diastolic phases. Therefore, t...

Automated In-Line Artificial Intelligence Measured Global Longitudinal Shortening and Mitral Annular Plane Systolic Excursion: Reproducibility and Prognostic Significance.

Journal of the American Heart Association
Background Global longitudinal shortening (GL-Shortening) and the mitral annular plane systolic excursion (MAPSE) are known markers in heart failure patients, but measurement may be subjective and less frequently reported because of the lack of autom...

End-systole and end-diastole detection in short axis cine MRI using a fully convolutional neural network with dilated convolutions.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
The correct assessment and characterization of heart anatomy and functionality is usually done through inspection of magnetic resonance image cine sequences. In the clinical setting it is especially important to determine the state of the left ventri...

Reproducibility of artificial intelligence-enabled plaque measurements between systolic and diastolic phases from coronary computed tomography angiography.

European radiology
OBJECTIVES: Current coronary CT angiography (CTA) guidelines suggest both end-systolic and mid-diastolic phases of the cardiac cycle can be used for CTA image acquisition. However, whether differences in the phase of the cardiac cycle influence coron...

Tricuspid valve flow measurement using a deep learning framework for automated valve-tracking 2D phase contrast.

Magnetic resonance in medicine
PURPOSE: Tricuspid valve flow velocities are challenging to measure with cardiovascular MR, as the rapidly moving valvular plane prohibits direct flow evaluation, but they are vitally important to diastolic function evaluation. We developed an automa...

Deep Learning for identifying systolic complexes in SCG traces: a cross-dataset analysis.

Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
The seismocardiographic signal is a promising alternative to the traditional ECG in the analysis of the cardiac activity. In particular, the systolic complex is known to be the most informative part of the seismocardiogram, thus requiring further ana...

Diagnostic accuracy of artificial intelligence for identifying systolic and diastolic cardiac dysfunction in the emergency department.

The American journal of emergency medicine
INTRODUCTION: Cardiac point-of-care ultrasound (POCUS) can evaluate for systolic and diastolic dysfunction to inform care in the Emergency Department (ED). However, accurate assessment can be limited by user experience. Artificial intelligence (AI) h...