A Partial Label-Based Machine Learning Approach For Cervical Whole-Slide Image Classification: The Winning TissueNet Solution.

Journal: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Published Date:

Abstract

Cervical cancer is the fourth most common cancer in women worldwide. To determine early treatment for patients, it is critical to accurately classify the cervical intraepithelial lesion status based on a microscopic biopsy. Lesion classification is a 4-class problem, with biopsies being designated as benign or increasingly malignant as class 1-3, with 3 being invasive cancer. Unfortunately, traditional biopsy analysis by a pathologist is time-consuming and subject to intra- and inter-observer variability. For this reason, it is of interest to develop automatic analysis pipelines to classify lesion status directly from a digitalized whole slide image (WSI). The recent TissueNet Challenge was organized to find the best automatic detection pipeline for this task, using a dataset of 1015 annotated WSI slides. In this work, we present our winning end-to-end solution for cervical slide classification composed of a two-step classification model: First, we classify individual slide patches using an ensemble CNN, followed by an SVM-based slide classification using statistical features of the aggregated patch-level predictions. Importantly, we present the key innovation of our approach, which is a novel partial label-based loss function that allows us to supplement the supervised WSI patch annotations with weakly supervised patches based on the WSI class. This led to us not requiring additional expert tissue annotation, while still reaching the winning score of 94.7%. Our approach is a step towards the clinical inclusion of automatic pipelines for cervical cancer treatment planning.Clinical relevance- The explanation of the winning Tis-sueNet AI algorithm for automated cervical cancer classification, which may provide insights for the next generation of computer assisted tools in digital pathology.

Authors

  • Rutger H J Fick
  • Brice Tayart
  • Capucine Bertrand
  • Solene Chan Lang
  • Tina Rey
  • Francesco Ciompi
    Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands. Electronic address: francesco.ciompi@radboudumc.nl.
  • Cyprien Tilmant
  • Isabelle Farre
  • Saima Ben Hadj