Deep Learning-Based Computer-Aided Fetal Echocardiography: Application to Heart Standard View Segmentation for Congenital Heart Defects Detection.

Journal: Sensors (Basel, Switzerland)
Published Date:

Abstract

Accurate segmentation of fetal heart in echocardiography images is essential for detecting the structural abnormalities such as congenital heart defects (CHDs). Due to the wide variations attributed to different factors, such as maternal obesity, abdominal scars, amniotic fluid volume, and great vessel connections, this process is still a challenging problem. CHDs detection with expertise in general are substandard; the accuracy of measurements remains highly dependent on humans' training, skills, and experience. To make such a process automatic, this study proposes deep learning-based computer-aided fetal heart echocardiography examinations with an instance segmentation approach, which inherently segments the four standard heart views and detects the defect simultaneously. We conducted several experiments with 1149 fetal heart images for predicting 24 objects, including four shapes of fetal heart standard views, 17 objects of heart-chambers in each view, and three cases of congenital heart defect. The result showed that the proposed model performed satisfactory performance for standard views segmentation, with a 79.97% intersection over union and 89.70% Dice coefficient similarity. It also performed well in the CHDs detection, with mean average precision around 98.30% for intra-patient variation and 82.42% for inter-patient variation. We believe that automatic segmentation and detection techniques could make an important contribution toward improving congenital heart disease diagnosis rates.

Authors

  • Siti Nurmaini
    Intelligent System Research Group, Universitas Sriwijaya, Palembang, Indonesia.
  • Muhammad Naufal Rachmatullah
    Intelligent System Research Group, Universitas Sriwijaya, Palembang, Indonesia.
  • Ade Iriani Sapitri
    Intelligent System Research Group, Universitas Sriwijaya, Palembang, Indonesia.
  • Annisa Darmawahyuni
    Intelligent System Research Group, Universitas Sriwijaya, Palembang, Indonesia.
  • Bambang Tutuko
    Intelligent System Research Group, Universitas Sriwijaya, Palembang, Indonesia.
  • Firdaus Firdaus
    Intelligent System Research Group, Universitas Sriwijaya, Palembang, Indonesia.
  • Radiyati Umi Partan
    Faculty of Medicine, Universitas Sriwijaya, Palembang 30139, Indonesia.
  • Nuswil Bernolian
    Department of Obstetrics and Gynecology, Fetomaternal Division, Dr. Mohammad Hoesin General Hospital, Palembang, Indonesia.