PURPOSE: To assess the performance of a newly introduced deep learning-based reconstruction algorithm, namely the artificial intelligence iterative reconstruction (AIIR), in reducing the dose of pediatric chest CT by using the image data of below 3-y...
BACKGROUND: Plastic-containing medical devices are commonly used in critical care units and other patient care settings. Patients are often exposed to xenobiotic agents that are leached out from plastic-containing medical devices, including bisphenol...
INTRODUCTION: Congenital heart defect (CHD) is a significant, rapidly emerging global problem in child health and a leading cause of neonatal and childhood death. Prenatal detection of CHDs with the help of ultrasound allows better perinatal manageme...
BACKGROUND: Congenital heart disease (CHD) affects approximately 1% of newborns and is a leading cause of mortality in early childhood. Despite the importance of early detection, current screening methods, such as pulse oximetry and auscultation, hav...
This study evaluated the feasibility of HeartAssist, a novel automated tool designed for classification of fetal cardiac views, annotation of cardiac structures, and measurement of cardiac parameters. Unlike previous AI tools that primarily focused o...
Artificial intelligence (AI) is rapidly gaining attention in radiology and cardiology for accurately diagnosing structural heart disease. In this review paper, we first outline the technical background of AI and echocardiography and then present an a...
Examining the altered arrangement and patterning of sulcal folds offers insights into the mechanisms of neurodevelopmental differences in psychiatric and neurological disorders. Previous sulcal pattern analysis used spectral graph matching of sulcal ...
International journal of computer assisted radiology and surgery
Feb 11, 2025
PURPOSE: Deep-learning-based supervised CT segmentation relies on fully and densely labeled data, the labeling process of which is time-consuming. In this study, our proposed method aims to improve segmentation performance on CT volumes with limited ...
OBJECTIVE: To use artificial intelligence (AI) to automatically extract video clips of the fetal heart from a stream of ultrasound video, and to assess the performance of these when used for remote second review.
Fetal echocardiography (ultrasound of the fetal heart) plays a vital role in identifying heart defects, allowing clinicians to establish prenatal and postnatal management plans. Machine learning-based methods are emerging to support the automation of...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.