UMLF-COVID: an unsupervised meta-learning model specifically designed to identify X-ray images of COVID-19 patients.
Journal:
BMC medical imaging
Published Date:
Nov 22, 2021
Abstract
BACKGROUND: With the rapid spread of COVID-19 worldwide, quick screening for possible COVID-19 patients has become the focus of international researchers. Recently, many deep learning-based Computed Tomography (CT) image/X-ray image fast screening models for potential COVID-19 patients have been proposed. However, the existing models still have two main problems. First, most of the existing supervised models are based on pre-trained model parameters. The pre-training model needs to be constructed on a dataset with features similar to those in COVID-19 X-ray images, which limits the construction and use of the model. Second, the number of categories based on the X-ray dataset of COVID-19 and other pneumonia patients is usually imbalanced. In addition, the quality is difficult to distinguish, leading to non-ideal results with the existing model in the multi-class classification COVID-19 recognition task. Moreover, no researchers have proposed a COVID-19 X-ray image learning model based on unsupervised meta-learning.