A novel speech emotion recognition method based on feature construction and ensemble learning.

Journal: PloS one
Published Date:

Abstract

In the field of Human-Computer Interaction (HCI), speech emotion recognition technology plays an important role. Facing a small number of speech emotion data, a novel speech emotion recognition method based on feature construction and ensemble learning is proposed in this paper. Firstly, the acoustic features are extracted from the speech signal and combined to form different original feature sets. Secondly, based on Light Gradient Boosting Machine (LightGBM) and Sequential Forward Selection (SFS) method, a novel feature selection method named L-SFS is proposed. And then, the softmax regression model is used to learn automatically the weights of the four single weak learners including Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Extreme Gradient Boosting (XGBoost) and LightGBM. Lastly, based on the learned automatically weights and the weighted average probability voting strategy, an ensemble classification model named Sklex is constructed, which integrates the above four single weak learners. In conclusion, the method reflects the effectiveness of feature construction and the superiority and stability of ensemble learning, and gets good speech emotion recognition accuracy.

Authors

  • Yi Guo
    Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
  • Xuejun Xiong
    Electrical Engineering and Electronic Information, Xihua University, Chengdu, China.
  • Yangcheng Liu
    Electrical Engineering and Electronic Information, Xihua University, Chengdu, China.
  • Liang Xu
  • Qiong Li
    Department of Burns & Wound Care Centre, 2nd Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310000, Zhejiang Province, China. 2504131@zju.edu.cn.