Multimodal Magnetic Resonance Imaging to Diagnose Knee Osteoarthritis under Artificial Intelligence.
Journal:
Computational intelligence and neuroscience
Published Date:
Jun 23, 2022
Abstract
This work aimed to investigate the application value of the multimodal magnetic resonance imaging (MRI) algorithm based on the low-rank decomposition denoising (LRDD) in the diagnosis of knee osteoarthritis (KOA), so as to offer a better examination method in the clinic. Seventy-eight patients with KOA were selected as the research objects, and they all underwent T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), fat suppression T2WI (SE-T2WI), and fat saturation T2WI (FS-T2WI). All obtained images were processed by using the I-LRDD algorithm. According to the degree of articular cartilage lesions under arthroscopy, the patients were divided into a group I, a group II, a group III, and a group IV. The sensitivity, specificity, accuracy, and consistency of KOA diagnosis of T1WI, T2WI, SE-T2WI, and FS-T2WI were analyzed by referring to the results of arthroscopy. The results showed that the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) of the I-LRDD algorithm used in this work were higher than those of image block priori denoising (IBPD) and LRDD, and the time consumption was lower than that of IBDP and LRDD ( < 0.05). The sensitivity, specificity, accuracy, and consistency (Kappa value) of multimodal MRI in the diagnosis of KOA were 88.61%, 85.3%, 87.37%, and 0.73%, respectively, which were higher than those of T1WI, T2WI, SE-T2WI, and FS-T2WI. The sensitivity, specificity, accuracy, and consistency of multimodal MRI in diagnosing lesions in group IV were 95%, 96.10%, 95.88%, and 0.70%, respectively, which were much higher than those in groups I, II, and III ( < 0.05). In conclusion, the LRDD algorithm shows a good image processing efficacy, and the multimodal MRI showed a good diagnosis effect on KOA, which was worthy of promotion clinically.