Granger causality test with nonlinear neural-network-based methods: Python package and simulation study.
Journal:
Computer methods and programs in biomedicine
Published Date:
Jan 29, 2022
Abstract
BACKGROUND AND OBJECTIVE: Causality defined by Granger in 1969 is a widely used concept, particularly in neuroscience and economics. As there is an increasing interest in nonlinear causality research, a Python package with a neural-network-based causality analysis approach was created. It allows performing causality tests using neural networks based on Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), or Multilayer Perceptron (MLP). The aim of this paper is to present the nonlinear method for causality analysis and the created Python package.