Computational anti-COVID-19 drug design: progress and challenges.

Journal: Briefings in bioinformatics
Published Date:

Abstract

Vaccines have made gratifying progress in preventing the 2019 coronavirus disease (COVID-19) pandemic. However, the emergence of variants, especially the latest delta variant, has brought considerable challenges to human health. Hence, the development of robust therapeutic approaches, such as anti-COVID-19 drug design, could aid in managing the pandemic more efficiently. Some drug design strategies have been successfully applied during the COVID-19 pandemic to create and validate related lead drugs. The computational drug design methods used for COVID-19 can be roughly divided into (i) structure-based approaches and (ii) artificial intelligence (AI)-based approaches. Structure-based approaches investigate different molecular fragments and functional groups through lead drugs and apply relevant tools to produce antiviral drugs. AI-based approaches usually use end-to-end learning to explore a larger biochemical space to design antiviral drugs. This review provides an overview of the two design strategies of anti-COVID-19 drugs, the advantages and disadvantages of these strategies and discussions of future developments.

Authors

  • Jinxian Wang
    School of Computer Science and Engineering, Central South University,410075, Changsha, China.
  • Ying Zhang
    Department of Nephrology, Nanchong Central Hospital Affiliated to North Sichuan Medical College, Nanchong, China.
  • Wenjuan Nie
    School of Computer Science and Engineering, Central South University,410075, Changsha, China.
  • Yi Luo
    Electrical and Computer Engineering Department, Bioengineering Department, University of California, Los Angeles, CA 90095 USA, and also with the California NanoSystems Institute, University of California, Los Angeles, CA 90095 USA.
  • Lei Deng
    1] Center for Brain Inspired Computing Research (CBICR), Department of Precision Instrument, Tsinghua University, Beijing 100084, China [2] Optical Memory National Engineering Research Center, Department of Precision Instrument, Tsinghua University, Beijing 100084, China.