Crossover based technique for data augmentation.
Journal:
Computer methods and programs in biomedicine
Published Date:
Feb 28, 2022
Abstract
BACKGROUND AND OBJECTIVE: Medical image classification problems are frequently constrained by the availability of datasets. "Data augmentation" has come as a data enhancement and data enrichment solution to the challenge of limited data. Traditionally data augmentation techniques are based on linear and label preserving transformations; however, recent works have demonstrated that even non-linear, non-label preserving techniques can be unexpectedly effective. This paper proposes a non-linear data augmentation technique for the medical domain and explores its results.