A Novel Framework for Generating Personalized Network Datasets for NIDS Based on Traffic Aggregation.

Journal: Sensors (Basel, Switzerland)
Published Date:

Abstract

In this paper, we addressed the problem of dataset scarcity for the task of network intrusion detection. Our main contribution was to develop a framework that provides a complete process for generating network traffic datasets based on the aggregation of real network traces. In addition, we proposed a set of tools for attribute extraction and labeling of traffic sessions. A new dataset with botnet network traffic was generated by the framework to assess our proposed method with machine learning algorithms suitable for unbalanced data. The performance of the classifiers was evaluated in terms of macro-averages of 1-score (0.97) and the Matthews Correlation Coefficient (0.94), showing a good overall performance average.

Authors

  • Pablo Velarde-Alvarado
    Unidad Académica de Ciencias Básicas e Ingenierías, Universidad Autónoma de Nayarit, Tepic 63000, Mexico.
  • Hugo Gonzalez
    Academia de Tecnologías de la Información y Telemática, Universidad Politécnica de San Luis Potosí, San Luis Potosí 78363, Mexico.
  • Rafael Martínez-Peláez
    Facultad de Ingenierías y Tecnologías, Universidad De La Salle Bajío, Av. Universidad 602, León 37150, Mexico.
  • Luis J Mena
    Unidad Académica de Computación, Universidad Politécnica de Sinaloa, Ctra. Libre Mazatlán Higueras Km 3, Mazatlán 82199, Mexico.
  • Alberto Ochoa-Brust
    Facultad de Ingeniería Mecánica y Eléctrica, Universidad de Colima, Av. Universidad 333, Colima 28040, Mexico.
  • Efraín Moreno-García
    Dirección de Posgrado e investigación, Instituto Tecnológico de Tepic, Tepic 63175, Mexico.
  • Vanessa G Félix
    Unidad Académica de Computación, Universidad Politécnica de Sinaloa, Ctra. Libre Mazatlán Higueras Km 3, Mazatlán 82199, Mexico.
  • Rodolfo Ostos
    Unidad Académica de Computación, Universidad Politécnica de Sinaloa, Ctra. Libre Mazatlán Higueras Km 3, Mazatlán 82199, Mexico.