Receptor tyrosine kinase MET ligand-interaction classified via machine learning from single-particle tracking data.

Journal: Molecular biology of the cell
Published Date:

Abstract

Internalin B-mediated activation of the membrane-bound receptor tyrosine kinase MET is accompanied by a change in receptor mobility. Conversely, it should be possible to infer from receptor mobility whether a cell has been treated with internalin B. Here, we propose a method based on hidden Markov modeling and explainable artificial intelligence that machine-learns the key differences in MET mobility between internalin B-treated and -untreated cells from single-particle tracking data. Our method assigns receptor mobility to three diffusion modes (immobile, slow, and fast). It discriminates between internalin B-treated and -untreated cells with a balanced accuracy of >99% and identifies three parameters that are most affected by internalin B treatment: a decrease in the mobility of slow molecules (1) and a depopulation of the fast mode (2) caused by an increased transition of fast molecules to the slow mode (3). Our approach is based entirely on free software and is readily applicable to the analysis of other membrane receptors.

Authors

  • Sebastian Malkusch
    Institute of Clinical Pharmacology, Goethe - University, Frankfurt am Main, Germany.
  • Johanna V Rahm
    Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany.
  • Marina S Dietz
    Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany.
  • Mike Heilemann
    Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany.
  • Jean-Baptiste Sibarita
    University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France.
  • Jörn Lötsch
    Institute of Clinical Pharmacology, Goethe - University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany.