Direct and indirect strategies of deep-learning-based attenuation correction for general purpose and dedicated cardiac SPECT.
Journal:
European journal of nuclear medicine and molecular imaging
Published Date:
Feb 16, 2022
Abstract
PURPOSE: Deep-learning-based attenuation correction (AC) for SPECT includes both indirect and direct approaches. Indirect approaches generate attenuation maps (μ-maps) from emission images, while direct approaches predict AC images directly from non-attenuation-corrected (NAC) images without μ-maps. For dedicated cardiac SPECT scanners with CZT detectors, indirect approaches are challenging due to the limited field-of-view (FOV). In this work, we aim to 1) first develop novel indirect approaches to improve the AC performance for dedicated SPECT; and 2) compare the AC performance between direct and indirect approaches for both general purpose and dedicated SPECT.