Incomplete Label Multiple Instance Multiple Label Learning.

Journal: IEEE transactions on pattern analysis and machine intelligence
Published Date:

Abstract

With increasing data volumes, the bottleneck in obtaining data for training a given learning task is the cost of manually labeling instances within the data. To alleviate this issue, various reduced label settings have been considered including semi-supervised learning, partial- or incomplete-label learning, multiple-instance learning, and active learning. Here, we focus on multiple-instance multiple-label learning with missing bag labels. Little research has been done for this challenging yet potentially powerful variant of incomplete supervision learning. We introduce a novel discriminative probabilistic model for missing labels in multiple-instance multiple-label learning. To address inference challenges, we introduce an efficient implementation of the EM algorithm for the model. Additionally, we consider an alternative inference approach that relies on maximizing the label-wise marginal likelihood of the proposed model instead of the joint likelihood. Numerical experiments on benchmark datasets illustrate the robustness of the proposed approach. In particular, comparison to state-of-the-art methods shows that our approach introduces a significantly smaller decrease in performance when the proportion of missing labels is increased.

Authors

  • Tam Nguyen
    Department of Pulmonology, Isala Clinics Zwolle, Dokter van Heesweg 2, 8025 AB, Zwolle, The Netherlands.
  • Raviv Raich