A visually interpretable detection method combines 3-D ECG with a multi-VGG neural network for myocardial infarction identification.
Journal:
Computer methods and programs in biomedicine
Published Date:
Mar 23, 2022
Abstract
BACKGROUND AND OBJECTIVE: The automatic recognition of myocardial infarction (MI) by artificial intelligence (AI) has been an emerging topic of academic research and an existing classification method that can recognize conventional electrocardiogram (ECG) signals with high accuracy. However, they are employed to classify one-dimensional (1-D) ECG signals rather than three-dimensional (3-D) ECG images, and it is limited to provide physicians with significant recommendations to aid in diagnosis like highlighting abnormal leads. Other studies on 3-D ECG images either did not achieve high accuracy or did not employ an inter-patient classification scheme. By proposing a multi-VGG deep neural network, this study aims to develop an automatic classification method for identifying myocardial infarction with inter-patient high accuracy and proper interpretability using 3-D ECG image and a Grad-CAM++ method.