COVID-19 image classification using deep learning: Advances, challenges and opportunities.

Journal: Computers in biology and medicine
Published Date:

Abstract

Corona Virus Disease-2019 (COVID-19), caused by Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2), is a highly contagious disease that has affected the lives of millions around the world. Chest X-Ray (CXR) and Computed Tomography (CT) imaging modalities are widely used to obtain a fast and accurate diagnosis of COVID-19. However, manual identification of the infection through radio images is extremely challenging because it is time-consuming and highly prone to human errors. Artificial Intelligence (AI)-techniques have shown potential and are being exploited further in the development of automated and accurate solutions for COVID-19 detection. Among AI methodologies, Deep Learning (DL) algorithms, particularly Convolutional Neural Networks (CNN), have gained significant popularity for the classification of COVID-19. This paper summarizes and reviews a number of significant research publications on the DL-based classification of COVID-19 through CXR and CT images. We also present an outline of the current state-of-the-art advances and a critical discussion of open challenges. We conclude our study by enumerating some future directions of research in COVID-19 imaging classification.

Authors

  • Priya Aggarwal
    IIIT-Delhi, Delhi, India.
  • Narendra Kumar Mishra
    The Department of EE, Indian Institute of Technology Delhi, Delhi 110016, India. Electronic address: eez188568@ee.iitd.ac.in.
  • Binish Fatimah
    The Department of ECE, CMR Institute of Technology, Bengaluru, India. Electronic address: binish.fatimah@gmail.com.
  • Pushpendra Singh
    Department of Information Technology, Raj Kumar Goel Institute of Technology, Ghaziabad (UP) 101003, India.
  • Anubha Gupta
    SBILab, Deptt. of ECE, IIIT-Delhi, Delhi, India.
  • Shiv Dutt Joshi
    The Department of EE, Indian Institute of Technology Delhi, Delhi 110016, India. Electronic address: sdjoshi@ee.iitd.ac.in.