A deep dilated convolutional residual network for predicting interchain contacts of protein homodimers.
Journal:
Bioinformatics (Oxford, England)
Published Date:
Mar 28, 2022
Abstract
MOTIVATION: Deep learning has revolutionized protein tertiary structure prediction recently. The cutting-edge deep learning methods such as AlphaFold can predict high-accuracy tertiary structures for most individual protein chains. However, the accuracy of predicting quaternary structures of protein complexes consisting of multiple chains is still relatively low due to lack of advanced deep learning methods in the field. Because interchain residue-residue contacts can be used as distance restraints to guide quaternary structure modeling, here we develop a deep dilated convolutional residual network method (DRCon) to predict interchain residue-residue contacts in homodimers from residue-residue co-evolutionary signals derived from multiple sequence alignments of monomers, intrachain residue-residue contacts of monomers extracted from true/predicted tertiary structures or predicted by deep learning, and other sequence and structural features.