Few-Shot Learning for Deformable Medical Image Registration With Perception-Correspondence Decoupling and Reverse Teaching.

Journal: IEEE journal of biomedical and health informatics
Published Date:

Abstract

Deformable medical image registration estimates corresponding deformation to align the regions of interest (ROIs) of two images to a same spatial coordinate system. However, recent unsupervised registration models only have correspondence ability without perception, making misalignment on blurred anatomies and distortion on task-unconcerned backgrounds. Label-constrained (LC) registration models embed the perception ability via labels, but the lack of texture constraints in labels and the expensive labeling costs causes distortion internal ROIs and overfitted perception. We propose the first few-shot deformable medical image registration framework, Perception-Correspondence Registration (PC-Reg), which embeds perception ability to registration models only with few labels, thus greatly improving registration accuracy and reducing distortion. 1) We propose the Perception-Correspondence Decoupling which decouples the perception and correspondence actions of registration to two CNNs. Therefore, independent optimizations and feature representations are available avoiding interference of the correspondence due to the lack of texture constraints. 2) For few-shot learning, we propose Reverse Teaching which aligns labeled and unlabeled images to each other to provide supervision information to the structure and style knowledge in unlabeled images, thus generating additional training data. Therefore, these data will reversely teach our perception CNN more style and structure knowledge, improving its generalization ability. Our experiments on three datasets with only five labels demonstrate that our PC-Reg has competitive registration accuracy and effective distortion-reducing ability. Compared with LC-VoxelMorph( λ = 1), we achieve the 12.5%, 6.3% and 1.0% Reg-DSC improvements on three datasets, revealing our framework with great potential in clinical application.

Authors

  • Yuting He
  • Tiantian Li
    China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, People's Republic of China.
  • Rongjun Ge
    Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing, China; Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, Nanjing, China; Centre de Recherche en Information Biomedicale Sino-Francais (LIA CRIBs), Rennes, France.
  • Jian Yang
    Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.
  • Youyong Kong
    Lab of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing, China. kongyouyong@seu.edu.cn.
  • Jian Zhu
  • Huazhong Shu
    Lab of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing, China. shu.list@seu.edu.cn.
  • Guanyu Yang
    Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing, China; Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, Nanjing, China; Centre de Recherche en Information Biomedicale Sino-Francais (LIA CRIBs), Rennes, France.
  • Shuo Li
    Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.