Artificial neural networks to model the enantioresolution of structurally unrelated neutral and basic compounds with cellulose tris(3,5-dimethylphenylcarbamate) chiral stationary phase and aqueous-acetonitrile mobile phases.

Journal: Journal of chromatography. A
PMID:

Abstract

Artificial neural networks (ANN; feed-forward mode) are used to quantitatively estimate the enantioresolution (Rs) in cellulose tris(3,5-dimethylphenylcarbamate) of chiral molecules from their structural information. To the best of our knowledge, for the first time, a dataset of structurally unrelated compounds is modelled using ANN, attempting to approach a model of general applicability. After setting a strategy compatible with the data complexity and their relatively limited size (56 molecules), by prefixing initial ANN inner weights and the validation and cross-validation subsets, the ANN optimisation based on a novel quality indicator calculated from 9 ANN outputs allows selecting a proper (predictive) ANN architecture (a single hidden layer of 7 neurons) and performing a forward-stepwise feature selection process (8 variables are selected). Such relatively simple ANN offers reasonable good general performance in predicting Rs (e.g. validation plot statistics: mean squared error = 0.047 and R = 0.98 and 0.92, for all or just the validation molecules, respectively). Finally, a study of the relative importance of the selected variables, combining the estimation from two approaches, suggests that the surface tension (positive overall contribution to Rs) and the -NHR groups (negative overall contribution to Rs) are found to be the main variables explaining the enantioresolution in the current conditions.

Authors

  • Mireia Pérez-Baeza
    Departamento de Química Analítica, Universitat de València E- 46100 Burjassot, Valencia, Spain.
  • Yolanda Martín-Biosca
    Departamento de Química Analítica, Universitat de València E- 46100 Burjassot, Valencia, Spain. Electronic address: yolanda.martin@uv.es.
  • Laura Escuder-Gilabert
    Departamento de Química Analítica, Universitat de València E- 46100 Burjassot, Valencia, Spain.
  • María José Medina-Hernández
    Departamento de Química Analítica, Universitat de València E- 46100 Burjassot, Valencia, Spain.
  • Salvador Sagrado
    Departamento de Química Analítica, Universitat de València E- 46100 Burjassot, Valencia, Spain; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitatde València, Valencia, Spain. Electronic address: sagrado@uv.es.