Electron microscopy of cardiac 3D nanodynamics: form, function, future.

Journal: Nature reviews. Cardiology
Published Date:

Abstract

The 3D nanostructure of the heart, its dynamic deformation during cycles of contraction and relaxation, and the effects of this deformation on cell function remain largely uncharted territory. Over the past decade, the first inroads have been made towards 3D reconstruction of heart cells, with a native resolution of around 1 nm, and of individual molecules relevant to heart function at a near-atomic scale. These advances have provided access to a new generation of data and have driven the development of increasingly smart, artificial intelligence-based, deep-learning image-analysis algorithms. By high-pressure freezing of cardiomyocytes with millisecond accuracy after initiation of an action potential, pseudodynamic snapshots of contraction-induced deformation of intracellular organelles can now be captured. In combination with functional studies, such as fluorescence imaging, exciting insights into cardiac autoregulatory processes at nano-to-micro scales are starting to emerge. In this Review, we discuss the progress in this fascinating new field to highlight the fundamental scientific insight that has emerged, based on technological breakthroughs in biological sample preparation, 3D imaging and data analysis; to illustrate the potential clinical relevance of understanding 3D cardiac nanodynamics; and to predict further progress that we can reasonably expect to see over the next 10 years.

Authors

  • Peter Kohl
    University of Freiburg, Medical Faculty, Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg · Bad Krozingen, and Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany, Freiburg, Germany.
  • Joachim Greiner
    Institute for Experimental Cardiovascular Medicine, University Heart Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany.
  • Eva A Rog-Zielinska
    Institute for Experimental Cardiovascular Medicine, University Heart Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany. eva.rog-zielinska@uniklinik-freiburg.de.