TransformerGO: predicting protein-protein interactions by modelling the attention between sets of gene ontology terms.
Journal:
Bioinformatics (Oxford, England)
PMID:
35176146
Abstract
MOTIVATION: Protein-protein interactions (PPIs) play a key role in diverse biological processes but only a small subset of the interactions has been experimentally identified. Additionally, high-throughput experimental techniques that detect PPIs are known to suffer various limitations, such as exaggerated false positives and negatives rates. The semantic similarity derived from the Gene Ontology (GO) annotation is regarded as one of the most powerful indicators for protein interactions. However, while computational approaches for prediction of PPIs have gained popularity in recent years, most methods fail to capture the specificity of GO terms.