Use of artificial intelligence in emergency radiology: An overview of current applications, challenges, and opportunities.

Journal: Clinical imaging
Published Date:

Abstract

The value of artificial intelligence (AI) in healthcare has become evident, especially in the field of medical imaging. The accelerated pace and acuity of care in the Emergency Department (ED) has made it a popular target for artificial intelligence-driven solutions. Software that helps better detect, report, and appropriately guide management can ensure high quality patient care while enabling emergency radiologists to better meet the demands of quick turnaround times. Beyond diagnostic applications, AI-based algorithms also have the potential to optimize other important steps within the ED imaging workflow. This review will highlight the different types of AI-based applications currently available for use in the ED, as well as the challenges and opportunities associated with their implementation.

Authors

  • Khalid Al-Dasuqi
    Department of Radiology and Biomedical Imaging, Yale School of Medicine, Box 208042, Tompkins East 2, 333 Cedar St, New Haven, CT 06520-8042, United States of America. Electronic address: khalid.aldasuqi@yale.edu.
  • Michele H Johnson
    Department of Radiology and Biomedical Imaging, Yale School of Medicine, Box 208042, Tompkins East 2, 333 Cedar St, New Haven, CT 06520-8042, United States of America. Electronic address: michele.h.johnson@yale.edu.
  • Joseph J Cavallo
    Department of Radiology and Biomedical Imaging, Yale School of Medicine, Box 208042, Tompkins East 2, 333 Cedar St, New Haven, CT 06520-8042, United States of America. Electronic address: joseph.cavallo@yale.edu.