A deep learning framework to classify breast density with noisy labels regularization.

Journal: Computer methods and programs in biomedicine
Published Date:

Abstract

BACKGROUND AND OBJECTIVE: Breast density assessed from digital mammograms is a biomarker for higher risk of developing breast cancer. Experienced radiologists assess breast density using the Breast Image and Data System (BI-RADS) categories. Supervised learning algorithms have been developed with this objective in mind, however, the performance of these algorithms depends on the quality of the ground-truth information which is usually labeled by expert readers. These labels are noisy approximations of the ground truth, as there is often intra- and inter-reader variability among labels. Thus, it is crucial to provide a reliable method to obtain digital mammograms matching BI-RADS categories. This paper presents RegL (Labels Regularizer), a methodology that includes different image pre-processes to allow both a correct breast segmentation and the enhancement of image quality through an intensity adjustment, thus allowing the use of deep learning to classify the mammograms into BI-RADS categories. The Confusion Matrix (CM) - CNN network used implements an architecture that models each radiologist's noisy label. The final methodology pipeline was determined after comparing the performance of image pre-processes combined with different DL architectures.

Authors

  • Hector Lopez-Almazan
    Instituto Tecnológico de la Informática, Universitat Politècnica de València,Camino de Vera, s/n, 46022 València, Spain. Electronic address: hlopez@iti.es.
  • Francisco Javier Pérez-Benito
    Instituto Tecnológico de la Informática, Universitat Politècnica de València,Camino de Vera, s/n, 46022 València, Spain. Electronic address: fjperez@iti.es.
  • Andrés Larroza
    Department of Medicine, Universitat de València, Valencia, Spain.
  • Juan-Carlos Perez-Cortes
    Instituto Tecnológico de Informática (ITI), Universitat Politècnica de València, 46022 Valencia, Spain.
  • Marina Pollan
    National Center for Epidemiology, Carlos III Institute of Health, Monforte de lemos 5, Madrid 28029, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Carlos III Institute of Health, Monforte de Lemos 5, Madrid 28029, Spain. Electronic address: mpollan@isciii.es.
  • Beatriz Pérez-Gómez
    National Center for Epidemiology, Carlos III Institute of Health, Monforte de lemos 5, Madrid 28029, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Carlos III Institute of Health, Monforte de Lemos 5, Madrid 28029, Spain. Electronic address: bperez@isciii.es.
  • Dolores Salas Trejo
    Valencian Breast Cancer Screening Program, General Directorate of Public Health, València, Spain; Centro Superior de Investigación en Salud Pública CSISP, FISABIO, València, Spain. Electronic address: salas_dol@gva.es.
  • Maria Casals
    Valencian Breast Cancer Screening Program, General Directorate of Public Health, València, Spain; Centro Superior de Investigación en Salud Pública CSISP, FISABIO, València, Spain. Electronic address: casalsmar@gva.es.
  • Rafael LLobet
    Instituto Tecnológico de la Informática, Universitat Politècnica de València, Camino de Vera, s/n, València 46022, Spain. Electronic address: rllobet@iti.upv.es.