Prediction of future healthcare expenses of patients from chest radiographs using deep learning: a pilot study.

Journal: Scientific reports
Published Date:

Abstract

Our objective was to develop deep learning models with chest radiograph data to predict healthcare costs and classify top-50% spenders. 21,872 frontal chest radiographs were retrospectively collected from 19,524 patients with at least 1-year spending data. Among the patients, 11,003 patients had 3 years of cost data, and 1678 patients had 5 years of cost data. Model performances were measured with area under the receiver operating characteristic curve (ROC-AUC) for classification of top-50% spenders and Spearman ρ for prediction of healthcare cost. The best model predicting 1-year (N = 21,872) expenditure achieved ROC-AUC of 0.806 [95% CI 0.793-0.819] for top-50% spender classification and ρ of 0.561 [0.536-0.586] for regression. Similarly, for predicting 3-year (N = 12,395) expenditure, ROC-AUC of 0.771 [0.750-0.794] and ρ of 0.524 [0.489-0.559]; for predicting 5-year (N = 1779) expenditure ROC-AUC of 0.729 [0.667-0.729] and ρ of 0.424 [0.324-0.529]. Our deep learning model demonstrated the feasibility of predicting health care expenditure as well as classifying top 50% healthcare spenders at 1, 3, and 5 year(s), implying the feasibility of combining deep learning with information-rich imaging data to uncover hidden associations that may allude to physicians. Such a model can be a starting point of making an accurate budget in reimbursement models in healthcare industries.

Authors

  • Jae Ho Sohn
    Radiology & Biomedical Imaging, UCSF Medical Center, 505 Parnassus Ave, San Francisco, CA, 94158, USA. sohn87@gmail.com.
  • Yixin Chen
    Department of Computer Science and Engineering, Washington University in St Louis, St Louis, MO, 63110, USA.
  • Dmytro Lituiev
    From the Department of Radiology and Biomedical Imaging (Y.D., J.H.S., H.T., R.H., N.W.J., T.P.C., M.S.A., C.M.A., S.C.B., R.R.F., S.Y.H., Y.S., R.A.H., M.H.P., B.L.F.) and Institute for Computational Health Sciences (J.H.S., M.G.K., H.T., D.L., K.A.Z., D.H.), University of California, San Francisco, 550 Parnassus Ave, San Francisco, CA 94143; Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, Calif (Y.D.); and Department of Radiology, University of California, Davis, Sacramento, Calif (L.N.).
  • Jaewon Yang
    Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California.
  • Karen Ordovas
    Department of Radiology and Biomedical Imaging, Center for Intelligent Imaging, University of California, San Francisco (UCSF), 505 Parnassus Ave, San Francisco, CA, 94143, USA.
  • Dexter Hadley
    Institute for Computational Health Sciences, University of California, San Francisco.
  • Thienkhai H Vu
    University of California San Francisco (UCSF), Radiology and Biomedical Imaging, 505 Parnassus Ave, San Francisco, CA 94143, USA.
  • Benjamin L Franc
    From the Department of Radiology and Biomedical Imaging (Y.D., J.H.S., H.T., R.H., N.W.J., T.P.C., M.S.A., C.M.A., S.C.B., R.R.F., S.Y.H., Y.S., R.A.H., M.H.P., B.L.F.) and Institute for Computational Health Sciences (J.H.S., M.G.K., H.T., D.L., K.A.Z., D.H.), University of California, San Francisco, 550 Parnassus Ave, San Francisco, CA 94143; Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, Calif (Y.D.); and Department of Radiology, University of California, Davis, Sacramento, Calif (L.N.).
  • Youngho Seo
    Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California.