Machine learning in the identification, prediction and exploration of environmental toxicology: Challenges and perspectives.

Journal: Journal of hazardous materials
Published Date:

Abstract

Over the past few decades, data-driven machine learning (ML) has distinguished itself from hypothesis-driven studies and has recently received much attention in environmental toxicology. However, the use of ML in environmental toxicology remains in the early stages, with knowledge gaps, technical bottlenecks in data quality, high-dimensional/heterogeneous/small-sample data analysis and model interpretability, and a lack of an in-depth understanding of environmental toxicology. Given the above problems, we review the recent progress in the literature and highlight state-of-the-art toxicological studies using ML (such as learning and predicting toxicity in complicated biosystems and multiple-factor environmental scenarios of long-term and large-scale pollution). Beyond predicting simple biological endpoints by integrating untargeted omics and adverse outcome pathways, ML development should focus on revealing toxicological mechanisms. The integration of data-driven ML with other methods (e.g., omics analysis and adverse outcome pathway frameworks) endows ML with widely promising application in revealing toxicological mechanisms. High-quality databases and interpretable algorithms are urgently needed for toxicology and environmental science. Addressing the core issues and future challenges for ML in this review may narrow the knowledge gap between environmental toxicity and computational science and facilitate the control of environmental risk in the future.

Authors

  • Xiaotong Wu
    State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China.
  • Qixing Zhou
    Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
  • Li Mu
    Tianjin Key Laboratory of Agro-environment and Safe-product, Key Laboratory for Environmental Factors Control of Agro-product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China. Electronic address: muli@caas.cn.
  • Xiangang Hu
    Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China. Electronic address: huxiangang@nankai.edu.cn.