Simultaneously optimizing sampling pattern for joint acceleration of multi-contrast MRI using model-based deep learning.

Journal: Medical physics
Published Date:

Abstract

BACKGROUND: Acceleration of MR imaging (MRI) is a popular research area, and usage of deep learning for acceleration has become highly widespread in the MR community. Joint acceleration of multiple-acquisition MRI was proven to be effective over a single-acquisition approach. Also, optimization in the sampling pattern demonstrated its advantage over conventional undersampling pattern. However, optimizing the sampling patterns for joint acceleration of multiple-acquisition MRI has not been investigated well.

Authors

  • Sunghun Seo
    Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea.
  • Huan Minh Luu
    Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea.
  • Seung Hong Choi
    From the Graduate School of Medical Science and Engineering (K.H.K., S.H.P.) and Department of Bio and Brain Engineering (S.H.P.), Korea Advanced Institute of Science and Technology, Room 1002, CMS (E16) Building, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea (S.H.C.); Department of Radiology, Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea (S.H.C.); and Center for Nanoparticle Research, Institute for Basic Science, Seoul, Republic of Korea (S.H.C.).
  • Sung-Hong Park
    From the Graduate School of Medical Science and Engineering (K.H.K., S.H.P.) and Department of Bio and Brain Engineering (S.H.P.), Korea Advanced Institute of Science and Technology, Room 1002, CMS (E16) Building, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea (S.H.C.); Department of Radiology, Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea (S.H.C.); and Center for Nanoparticle Research, Institute for Basic Science, Seoul, Republic of Korea (S.H.C.).