Automatic head computed tomography image noise quantification with deep learning.

Journal: Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
Published Date:

Abstract

PURPOSE: Computed tomography (CT) image noise is usually determined by standard deviation (SD) of pixel values from uniform image regions. This study investigates how deep learning (DL) could be applied in head CT image noise estimation.

Authors

  • Satu I Inkinen
    HUS Diagnostic Center, Radiology, Helsinki University and Helsinki University Hospital, Haartmaninkatu 4, 00290 Helsinki, Finland. Electronic address: satu.inkinen@hus.fi.
  • Teemu Mäkelä
    HUS Medical Imaging Center, Radiology, University of Helsinki and Helsinki University Hospital, P.O. Box 340, FI-00029 HUS, Helsinki, Finland; Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland.
  • Touko Kaasalainen
    HUS Diagnostic Center, Radiology, Helsinki University and Helsinki University Hospital, Haartmaninkatu 4, 00290 Helsinki, Finland.
  • Juha Peltonen
    HUS Diagnostic Center, Radiology, Helsinki University and Helsinki University Hospital, Haartmaninkatu 4, 00290 Helsinki, Finland.
  • Marko Kangasniemi
    HUS Medical Imaging Center, Radiology, University of Helsinki and Helsinki University Hospital, P.O. Box 340 (Haartmaninkatu 4), FI-00290, Helsinki, Finland.
  • Mika Kortesniemi
    HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland. Electronic address: mika.kortesniemi@hus.fi.