Automation of dry eye disease quantitative assessment: A review.

Journal: Clinical & experimental ophthalmology
Published Date:

Abstract

Dry eye disease (DED) is a common eye condition worldwide and a primary reason for visits to the ophthalmologist. DED diagnosis is performed through a combination of tests, some of which are unfortunately invasive, non-reproducible and lack accuracy. The following review describes methods that diagnose and measure the extent of eye dryness, enabling clinicians to quantify its severity. Our aim with this paper is to review classical methods as well as those that incorporate automation. For only four ways of quantifying DED, we take a deeper look into what main elements can benefit from automation and the different ways studies have incorporated it. Like numerous medical fields, Artificial Intelligence (AI) appears to be the path towards quality DED diagnosis. This review categorises diagnostic methods into the following: classical, semi-automated and promising AI-based automated methods.

Authors

  • Ikram Brahim
    Inserm, UMR 1101, Brest, France.
  • Mathieu Lamard
    Université de Bretagne Occidentale, 3 rue des Archives, Brest F-29200, France; Inserm, UMR 1101, 22 avenue Camille-Desmoulins, Brest F-29200, France.
  • Anas-Alexis Benyoussef
    Service d'Ophtalmologie, CHRU Brest, Brest, France.
  • Gwenolé Quellec
    Inserm, UMR 1101, 22 avenue Camille-Desmoulins, Brest F-29200, France. Electronic address: gwenole.quellec@inserm.fr.