Barriers to artificial intelligence implementation in radiology practice: What the radiologist needs to know.

Journal: Radiologia
Published Date:

Abstract

Artificial Intelligence has the potential to disrupt the way clinical radiology is practiced globally. However, there are barriers that radiologists should be aware of prior to implementing Artificial Intelligence in daily practice. Barriers include regulatory compliance, ethical issues, data privacy, cybersecurity, AI training bias, and safe integration of AI into routine practice. In this article, we summarize the issues and the impact on clinical radiology.

Authors

  • A V Nair
    Departamento de Imagenología Clínica, Hospital Al-Wakra, Hamad Medical Corporation, Doha, Qatar. Electronic address: dranirudhnair@gmail.com.
  • S Ramanathan
    Departamento de Radiología, Weill Cornell Medicine, Departamento de Imagenología Clínica, Hospital Al-Wakra, Hamad Medical Corporation, Doha, Qatar.
  • P Sathiadoss
    Departamento de Radiología, The Ottawa Hospital, Universidad de Ottawa, Ottawa, Ontario, Canada.
  • A Jajodia
    Departamento de Radiología, Juravinski Cancer Center y St. Josephs Healthcare, Universidad McMaster, Hamilton, Canada.
  • D Blair Macdonald
    Departamento de Radiología, Universidad de Ottawa, Ottawa, Ontario, Canada.