A RUL Estimation System from Clustered Run-to-Failure Degradation Signals.

Journal: Sensors (Basel, Switzerland)
Published Date:

Abstract

The prognostics and health management disciplines provide an efficient solution to improve a system's durability, taking advantage of its lifespan in functionality before a failure appears. Prognostics are performed to estimate the system or subsystem's remaining useful life (RUL). This estimation can be used as a supply in decision-making within maintenance plans and procedures. This work focuses on prognostics by developing a recurrent neural network and a forecasting method called Prophet to measure the performance quality in RUL estimation. We apply this approach to degradation signals, which do not need to be monotonical. Finally, we test our system using data from new generation telescopes in real-world applications.

Authors

  • Anthony D Cho
    Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Santiago 7941169, Chile.
  • Rodrigo A Carrasco
    Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Santiago 7941169, Chile.
  • Gonzalo A Ruz
    Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Av. Diagonal Las Torres 2640, Santiago, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile. Electronic address: gonzalo.ruz@uai.cl.