Using deep learning for ultrasound images to diagnose carpal tunnel syndrome with high accuracy.

Journal: Ultrasound in medicine & biology
PMID:

Abstract

Recently, deep learning (DL) algorithms have been adapted for the diagnosis of medical images. The purpose of this study was to detect image features using DL without measuring median nerve cross-sectional area (CSA) in ultrasonography (US) images of carpal tunnel syndrome (CTS) and calculate the diagnostic accuracy from the confusion matrix obtained. US images of 50 hands without CTS and 50 hands diagnosed with CTS were used in this study. The short-axis image of the median nerve was visualized, and 5000 images of both groups were prepared. Forty hands in each group were used as training data for the DL algorithm, while the remainder were used as test data. Transfer learning was performed using three pre-trained models. The confusion matrix and receiver operating characteristic curves were used to evaluate diagnostic accuracy. Furthermore, regions where DL was determined to be important were visualized. The highest score had an accuracy of 0.96, precision of 0.99 and recall of 0.94. Visualization of the important features revealed that the DL models focused on the epineurium of the median nerve and the surrounding soft tissue. The proposed technique enables the accurate prediction of CTS without measurement of the CSA.

Authors

  • Issei Shinohara
    Department of Orthopaedic Surgery, Kobe University, Graduate School of Medicine, 5-2, Kusunoki-cho7, Chuo-ku, Kobe City, Hyogo 650-0017, Japan.
  • Atsuyuki Inui
    Department of Orthopaedic Surgery, Kobe University, Graduate School of Medicine, 5-2, Kusunoki-cho7, Chuo-ku, Kobe City, Hyogo 650-0017, Japan. Electronic address: ainui@med.kobe-u.ac.jp.
  • Yutaka Mifune
    Department of Orthopaedic Surgery, Kobe University, Graduate School of Medicine, 5-2, Kusunoki-cho7, Chuo-ku, Kobe City, Hyogo 650-0017, Japan.
  • Hanako Nishimoto
    Department of Orthopaedic Surgery, Kobe University, Graduate School of Medicine, 5-2, Kusunoki-cho7, Chuo-ku, Kobe City, Hyogo 650-0017, Japan.
  • Kohei Yamaura
    Department of Orthopaedic Surgery, Kobe University, Graduate School of Medicine, 5-2, Kusunoki-cho7, Chuo-ku, Kobe City, Hyogo 650-0017, Japan.
  • Shintaro Mukohara
    Department of Orthopaedic Surgery, Kobe University, Graduate School of Medicine, 5-2, Kusunoki-cho7, Chuo-ku, Kobe City, Hyogo 650-0017, Japan.
  • Tomoya Yoshikawa
    Department of Orthopaedic Surgery, Kobe University, Graduate School of Medicine, 5-2, Kusunoki-cho7, Chuo-ku, Kobe City, Hyogo 650-0017, Japan.
  • Tatsuo Kato
    Department of Orthopaedic Surgery, Kobe University, Graduate School of Medicine, 5-2, Kusunoki-cho7, Chuo-ku, Kobe City, Hyogo 650-0017, Japan.
  • Takahiro Furukawa
    Department of Orthopaedic Surgery, Kobe University, Graduate School of Medicine, 5-2, Kusunoki-cho7, Chuo-ku, Kobe City, Hyogo 650-0017, Japan.
  • Yuichi Hoshino
    Department of Orthopaedic Surgery, Kobe University, Graduate School of Medicine, 5-2, Kusunoki-cho7, Chuo-ku, Kobe City, Hyogo 650-0017, Japan.
  • Takehiko Matsushita
    Department of Orthopaedic Surgery, Kobe University, Graduate School of Medicine, 5-2, Kusunoki-cho7, Chuo-ku, Kobe City, Hyogo 650-0017, Japan.
  • Ryosuke Kuroda
    Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan.