Affordable Artificial Intelligence-Assisted Machine Supervision System for the Small and Medium-Sized Manufacturers.

Journal: Sensors (Basel, Switzerland)
Published Date:

Abstract

With the rapid concurrent advance of artificial intelligence (AI) and Internet of Things (IoT) technology, manufacturing environments are being upgraded or equipped with a smart and connected infrastructure that empowers workers and supervisors to optimize manufacturing workflow and processes for improved energy efficiency, equipment reliability, quality, safety, and productivity. This challenges capital cost and complexity for many small and medium-sized manufacturers (SMMs) who heavily rely on people to supervise manufacturing processes and facilities. This research aims to create an affordable, scalable, accessible, and portable (ASAP) solution to automate the supervision of manufacturing processes. The proposed approach seeks to reduce the cost and complexity of smart manufacturing deployment for SMMs through the deployment of consumer-grade electronics and a novel AI development methodology. The proposed system, AI-assisted Machine Supervision (AIMS), provides SMMs with two major subsystems: direct machine monitoring (DMM) and human-machine interaction monitoring (HIM). The AIMS system was evaluated and validated with a case study in 3D printing through the affordable AI accelerator solution of the vision processing unit (VPU).

Authors

  • Chen Li
    School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
  • Shijie Bian
    Autonomy Research Center for STEAHM (ARCS), California State University Northridge, Northridge, CA 91324, USA.
  • Tongzi Wu
    Autonomy Research Center for STEAHM (ARCS), California State University Northridge, Northridge, CA 91324, USA.
  • Richard P Donovan
    California Institute for Telecommunications and Information Technology (Calit2), University of California Irvine, Irvine, CA 92297, USA.
  • Bingbing Li
    Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou 510515, Guangdong Province, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, Guangdong Province, China.