Artificial intelligence in multiparametric magnetic resonance imaging: A review.

Journal: Medical physics
Published Date:

Abstract

Multiparametric magnetic resonance imaging (mpMRI) is an indispensable tool in the clinical workflow for the diagnosis and treatment planning of various diseases. Machine learning-based artificial intelligence (AI) methods, especially those adopting the deep learning technique, have been extensively employed to perform mpMRI image classification, segmentation, registration, detection, reconstruction, and super-resolution. The current availabilities of increasing computational power and fast-improving AI algorithms have empowered numerous computer-based systems for applying mpMRI to disease diagnosis, imaging-guided radiotherapy, patient risk and overall survival time prediction, and the development of advanced quantitative imaging technology for magnetic resonance fingerprinting. However, the wide application of these developed systems in the clinic is still limited by a number of factors, including robustness, reliability, and interpretability. This survey aims to provide an overview for new researchers in the field as well as radiologists with the hope that they can understand the general concepts, main application scenarios, and remaining challenges of AI in mpMRI.

Authors

  • Cheng Li
    College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China.
  • Wen Li
  • Chenyang Liu
    Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China.
  • Hairong Zheng
    Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China.
  • Jing Cai
    Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China.
  • Shanshan Wang
    Key Laboratory of Agri-food Safety and Quality, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture of China, Beijing, 100081, PR China.